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TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORY 1Communication Over Fading Channelswith Delay ConstraintsRandall A. Berry and Robert G. GallagerAbstractWe consider a user communicating over a fading channel with perfect channel stateinformation. Data is assumed to arrive from some higher layer application and is stored ina bu�er until it is transmitted. We study adapting the user's transmission rate and powerbased on the channel state information as well as the bu�er occupancy; the objectives areto regulate both the long-term average transmission power and the average bu�er delayincurred by the tra�c. Two models for this situation are discussed; one corresponding to�xed-length/variable-rate codewords and one corresponding to variable-length codewords.The trade-o� between the average delay and the average transmission power required forreliable communication is analyzed. A dynamic programming formulation is given to �nd allPareto optimal power/delay operating points. We then quantify the behavior of this trade-o� in the regime of asymptotically large delay. In this regime we characterize simple bu�ercontrol policies which exhibit optimal characteristics. Connections to the delay-limitedcapacity and the expected capacity of fading channels are also discussed.KeywordsFading channels, power control, resource allocation, wireless networksI. IntroductionIn mobile wireless networks, communication typically takes place over time-varyingchannels. This time-variation or fading is due to several e�ects such as variations inmulti-path interference and shadowing. One technique to compensate for the chan-nel's fading is to dynamically allocate communication resources, such as the transmis-sion power or bit rate, based upon knowledge of the channel's state. Various methodsfor allocating transmission resources are part of most third-generation (3G) cellularstandards (see e.g., [1]). These methods include adjusting the transmission power,changing the constellation size and coding rate, and varying the spreading gain inCDMA based systems. In this paper, we are concerned with such resource allocationR. Berry is with the Department of Electrical and Computer Engineering, Northwestern University, 2145Sheridan Rd., Evanston, IL 60208 USA, (e-mail: rberry@ece.nwu.edu).R. Gallager is with the Laboratory for Information and Decision Systems, Massachusetts Institute ofTechnology, 77 Massachusetts Ave. Rm 35-206, Cambridge, MA 02139 USA (e-mail: gallager@mit.edu).
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ChannelFig. 1. System Model.problems. Speci�cally, we consider the situation depicted in Figure 1. In this situa-tion, data arrives from some higher layer application and is placed into a transmissionbu�er. Periodically the transmitter removes some of the data from the bu�er, encodesit and transmits the encoded data over a fading channel. After su�cient informationis received, the data is decoded and sent to a higher layer application at the receiver.We assume that the transmitter can allocate communication resources based on boththe bu�er occupancy and its knowledge of the channel.In the above situation, we consider two conicting objectives. One objective isto minimize the average transmission power required to reliably transmit the data.In a wireless network, mobile users often rely on a battery with a limited amount ofenergy; minimizing the average transmission power leads to a more e�cient utilizationof battery energy. We are interested here in long term average power consumptionrather than short term averages of interest in, say, regulatory constraints. Such shortterm considerations may be modeled as a constraint on each codeword sent, whilethe long term average power depends on the sequence of codewords that are sent.The second objective is to minimize the average delay incurred by the data. Thisobjective can be viewed as arising from the Quality of Service (QoS) desired by theuser. There is a clear trade-o� between these objectives - transmitting at a higherrate requires more power but reduces the average delay. There are many aspects ofthe above description that need to be more precisely de�ned; this will be done inSection 2.The delay experienced by data in the system of Fig. 1 is the sum of two components{ the time spent in the bu�er and the time from when data is encoded until it isdecoded. The issue of reliably communicating data over a fading channel falls mainlywithin the province of information theory. Indeed, there has been much work in thisarea; see [2] for a recent survey. Information theoretic treatments typically eitherignore delay completely or only consider the second component of delay. Bu�erdelay is usually considered a network layer problem and divorced from physical layerconsiderations. Generally it is assumed that when data leaves the bu�er it is deliveredwith a �xed rate and �xed delay to the destination.From a practical point of view, the above separation of physical layer coding delay
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 3and network layer bu�er delay is very reasonable in a wired, point-to-point link. Wegive two reasons.1 First, one can often send at rates near the information theoreticlimits with an acceptable probability of error and with moderate delay relative toapplication requirements. For bursty tra�c, the required coding delays are often ona much smaller time-scale than the tra�c variations which are addressed by higherlayer bu�er management. Second, in a wired network, there is little reason to considervarying the transmission rate and power. The channel is typically not time-varyingand users do not rely on a battery. Thus when transmitting, one should alwaystransmit at the peak rate and power.For the wireless situations we are interested in, neither of the above arguments needbe true. With fading channels, varying the transmission power or coding rate can beuseful in approaching capacity. Indeed, in many cases it is required. Additionally,approaching the capacity of a fading channel often requires the use of codewords longenough to \average over" the fading { the time required for this may be much longerthan the acceptable delay. If such long codewords can not be used, then capacity maynot be \meaningful". By this we mean that capacity does not give a good indicationof the rate at which data can be sent with acceptable performance. This is themotivation behind the work on capacity vs. outage [5] and delay-limited capacity [6].We look at these concepts in the next section and discuss their relation to the modelin this paper. Regarding other related work, situations similar to that in Figure 1have been looked at in [7] and [8], but not in the information theoretic context wetake here.The outline of the remainder of the paper is as follows. In Section II, a precisedescription of several models for the system in Fig. 1 is given. A model of the channelas well as two di�erent models of the bu�er dynamics are discussed. We also reviewseveral related capacity de�nitions for the channel model. In Section III, the trade-o�between average power and average delay for these models is analyzed. We view thisas a multi-objective optimization problem and give a Markov decision formulationfor �nding Pareto optimal solutions. The \optimal power/delay trade-o� curve" forsuch problems is also characterized. In Section IV, this trade-o� is analyzed in theasymptotic regime of large delay. In this regime the limiting required power is foundand we provide the rate of convergence to this limit as a function of the average delay.Simple bu�er control strategies are also given, which exhibit the optimal convergencerates. Section V contains some concluding remarks. Detailed proofs are given in theappendices.1These arguments are for a single user channel. In the case of a multi-user channel, there is an additionalcoupling between delay and physical layer issues that arises in trying to allocate resources between manybursty users ([3], [4]).
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4 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYII. Model and Problem DescriptionIn this section we describe two di�erent models for the situation in Fig. 1. Inboth cases we consider a block-fading model for the channel. This channel modelis described next; we also review several notions of capacity for this channel, suchas capacity vs. outage and delay-limited capacity. We then discuss two di�erentapproaches for modeling how the transmission rate and power are allocated overtime. In the �rst approach we consider �xed-length, variable-rate codewords, whilein the second approach we consider a �xed number of codewords with a variablelength. Both of these models lead to bu�er control problems that can be analyzed ina common framework.A. Block-fading ChannelWe consider a user communicating over a discrete-time, block-fading channel withadditive Gaussian noise. This channel has been used to model a slowly-varying,at-fading channel [5], [9] and is a generalization of the block interference channelintroduced by McEliece and Stark [10]. In such a channel the transmitted signalis multiplied by a time-varying gain that models the fading. Over each block ofN consecutive channel uses, the gain stays �xed. Let Hm denote the (baseband)complex channel gain during the mth block. Let Xm = (Xm;1; : : : ; Xm;N) and Ym =(Ym;1; : : : ; Ym;N) be vectors in C N which denote, respectively, the channel inputs andoutputs over the mth block. These are related by:Ym = HmXm + Zm; (1)where the additive noise Zm is a complex, circularly symmetric Gaussian randomvector with zero mean and covariance matrix �2I. Furthermore, the sequence fZmgis i.i.d. We assume that the sequence of channel gains, fHng, is a stationary ergodicMarkov chain with state space H. Conditioned on the current channel state, the nextstate, Hm+1, is independent of previous inputs and outputs, i.e. for all measurableB � H, all xm, ym and all m � 1,Pr(Hm+1 2 BjHm=hm;Xm=xm;Ym=ym)= Pr(Hm+1 2 BjHm=hm):Here we have denoted the sequence (x1; : : : ; xm) by xm. Let �H denote the steady-state distribution of fHmg (by the above assumptions such a distribution exists andis unique). For technical reasons we also assume that H is a compact subset of C .2It is worth discussing the appropriateness of a such a model for a wireless channel.Clearly, if we intend to model a channel in which there are r channel uses per second,thenN=r, the number of seconds per block, must be less than the coherence time of the2This assumption is used in the proof of Lemma 4.3.
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 5channel. Since we allow the fading process to have memory, N=r may be strictly lessthan the coherence time; for a memoryless fading process N=r must be approximatelyequal to the coherence time. If the underlying system we are modeling uses frequencyhopping or TDMA, where the dwell time is N=r seconds, this is a good model forthe channel variation. Otherwise, this model can be considered an approximation ofa more physically motivated continuously-varying channel model as in [11]. A betterapproximation of such a model would be to choose N = 1 and account for all ofthe channel memory with the underlying Markov chain. We do not rule out such achoice of N in the above de�nition, and indeed for the model in Section II-C thisassumption may be appropriate. For the model in Section II-B, having N >> 1 ismore appropriate; using a block fading model also facilitates drawing connectionswith previous work on outage capacity and delay-limited capacity.The assumption of at fading is reasonable for a narrow-band system in whichthe bandwidth of a user is less than the channel's coherence bandwidth. The modelwe describe can easily be modi�ed for a wide-band system with block-memorylessfading. Such a model would assume no ISI between blocks, but allow ISI within ablock. This more general model would not provide any additional insights and wouldfurther complicate our notation, so we focus on the narrow-band case in the following.Assume that both the transmitter and receiver have perfect CSI, meaning thatduring the mth block, both the transmitter and receiver know the value of Hm.3Several di�erent notions of capacity appear in the literature that are applicable tothe block-fading channels with perfect CSI. In the remainder of this section, we reviewthese capacity de�nitions and discuss there signi�cance for the problem at hand. LetC denote the solution to the following optimization problem:maximizeP :H7!R+ EH log�1 + jHj2P (H)�2 �subject to: EHP (H) � �P ; (2)where H is a random variable with the steady-state distribution �H and P : H 7! R+is a power allocation, i.e. a function which indicates the average power used for eachchannel state h 2 H. In [12] a coding theorem and converse are proved showing thatC is the capacity of this fading channel. We emphasize that in this case the capacity,C, has the \usual" operational signi�cance that for any rate R < C, there exists asequence of rate R codes of increasing block length such that the error probabilitygoes to zero with increasing block length. This is to be contrasted with other notionsof capacity de�ned in the following. The optimizing power allocation P in (2) is given3This is clearly an idealized assumption which will be more appropriate the longer the channel's coherencetime.



www.manaraa.com

6 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYby P (h) = �1� � �2jhj2�+ for all h 2 H; (3)where � is a constant chosen so that the average power constraint is met. This is thewell-known \water-�lling" allocation over the channel state space [13]. It has beenshown that C can be achieved by using either a \single-codebook, variable-power"transmission scheme [14] or a \multiplexed multi-rate, variable-power" scheme [12].In either case approaching capacity requires one to use codewords long enough to takeadvantage of the ergodic properties of the fading process fHmg. Delay constraintscan prohibit the use of such long codewords, in which case this capacity does notprovide a useful performance indication in the above operational sense.While delay considerations may prohibit code-lengths long enough to average overthe fading process, in many cases code-lengths are long enough for su�cient averagingof the additive noise. For example, suppose that each codeword must be sent inone block of N channel uses; in other words the delay constraint is less than thecoherence time of the channel. If N >> 1, then reliable communication may still bepossible during that block. In such situations, a composite channelmodel may be moreappropriate.4 Speci�cally, consider a family of channels, one channel correspondingto each possible realization of Hm. Assume that each of these channels occurs withthe steady-state probability �H . A codeword is then sent over one channel from thefamily; the channel staying �xed for the entire codeword. In this context, severalnotions of capacity have been de�ned, including capacity vs. outage, delay-limitedcapacity and expected capacity. Each of these notions of capacity is intended tooperationally correspond to a di�erent notion of rate. We de�ne these quantitiesnext.In [5] the capacity versus outage probability � or �-capacity of the composite channelis de�ned to be the solution to the optimization problemmaximizeP :H7!R+;R Rsubject to: Pr�log�1 + jHj2P (H)�2 � � R� � �EP (H) � �P : (4)The event log�1 + jHj2P (H)�2 � < R is referred to as an outage. Capacity versus outageprobability �, is the maximum mutual information rate that can be transmitted inevery channel realization except a subset whose probability is less than �. The capacity4A composite channel is a compound channel where each sub-channel has an a priori probability associatedwith it. [15].
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 7versus outage probability 0 is also referred to as the delay-limited capacity [6]. Thedelay-limited capacity can be shown to be given by [14]log�1 + �PE (1=jHj2)�for any channel in which E (1=jHj2) is �nite; otherwise the delay-limited capacity willbe zero.Finally the expected capacity of the composite channel is de�ned to be the solutionto the same optimization problem as in (2) above.5 Now this quantity is given adi�erent interpretation. A variable rate of mutual information (per codeword) istransmitted depending on the channel state. The expected capacity is the maximumexpected rate.The above capacities are all de�ned to be the maximum mutual information \rate"per codeword, where rate is interpreted di�erently in each case. For example, inthe case of delay-limited capacity one is interested in the maximum constant rateper codeword; in the case of expected capacity, one is interested in the maximumexpected rate per codeword. These quantities are intended to have the synonymousoperational signi�cance, that is they are meant to be the maximum \rate" for whichthere exists a sequence of block codes with that rate whose error probability goesto zero with increasing block length. To prove such a statement, a coding theoremand converse are needed. Recall we modeled the channel as a composite channeldue to a delay constraint, N , which was assumed to be less than the coherencetime of the channel. The usual type of converse via Fano's inequality holds with�nite delay, i.e. for arbitrarily small probability of error, the rate must be less thanthe corresponding capacity. On the other hand, with �nite delay, we can not getarbitrarily small probability of error and thus prove a coding theorem for the abovecapacity de�nitions. If we consider arbitrarily long codewords, then the assumptionthat N is less than the coherence time ceases to hold; thus the composite channelmodel is no longer appropriate. One way to prove an achievability result for thesemodels, as in [14], is to consider the sequence of composite channels indexed by theblock length N = 1; 2; :::. As N increases, it is assumed that the coherence time ofthe corresponding channel also increases. Letting N ! 1 a coding theorem can beproved for the limiting channel. Of course, in the actual channel, the coherence timeis �xed; thus this limiting operation has no physical signi�cance, as opposed to the\usual" cases, such as a Gaussian channel without fading.From a practical point of view, the above quantities can be useful if N is largeenough relative to the block length required for reliable communication, but is stillsmall relative to the coherence time of the channel. Again, by useful, we mean thatthese quantities give a good indication of the rates that are achievable with acceptably5For the case where the transmitter has no CSI, approaching the expected capacity requires a broadcastcoding strategy [15], [16]. With perfect CSI at the transmitter, a broadcast approach is not required.
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8 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYsmall probability of error. If N is large enough, then a given probability of error canbe achieved by transmitting at rates near the corresponding capacity. How large Nmust be depends on the error exponents for the composite channel.The above ideas can be extended to delay constraints of more than one channelblock i.e. more than one coherence time. This is done in [14] under the assumptionthat the transmitter has non-causal CSI for the entire channel realization over whicheach codeword is to be sent; in this case these ideas extend directly. Some discussionof the case where the transmitter has causal CSI is discussed in [17]; this situation issomewhat more problematic. In the following we will focus on the single block case,mainly to simplify notation.We de�ned the above capacities as the maximum of a mutual information ratefor a given power constraint. In the following it will be more useful to think of theinverse problem of �nding the minimum power for a given rate of mutual information.We can de�ne an analogous \power" formulation of both delay limited capacity andexpected capacity for the block fading channel with delay constraint of one block.Corresponding to delay-limited capacity, the minimum power for rate R is given by:minimizeP :H7!R+ EP (H)subject to: log�1 + jhj2P (h)�2 � > R 8h 2 H (5)Likewise, corresponding to expected capacity, the minimum power for average rate Ris given by: minimizeP :H7!R+ EHP (H)subject to: EH log�1 + jHj2P (H)�2 � > R; (6)where the solution to (6) corresponds to a water-�lling power allocation. Thesequantities have an analogous interpretation to the corresponding capacities above.For a given delay constraint, N , they represent a lower bound on the required powerto achieve arbitrarily small probability of error. Likewise as N ! 1 these boundsare approachable.The only di�erence between (5) and (6) is the constraint set for the minimization;this set corresponds to the particular mutual information rate of interest. In bothcases, this set is determined by a requirement on the mutual information of a singlecodeword. Next, we will consider more complicated constraint sets, which dependon the entire sequence of codewords. These constraints will involve a bu�er as inFig. 1. Also note that both of the above formulations depend only on the steady-state distribution of the fading process; the memory in the fading process has noe�ect. This will no longer hold when we consider bu�er constraints. Finally, we
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 9again emphasize that the above quantities are only meaningful if the time-scale of thedelay constraint is small relative to the coherence time, but large relative to the errorexponents of the component channels. In the next section we will consider modelswhich allow for these assumptions to be relaxed in various degrees.We will look at two di�erent models of the situation depicted in Fig. 1. In bothcases we consider a discrete-time model of the bu�er where a time sample correspondsto a single block of N channel uses of a block fading channel. In the �rst case wewill assume that all codewords are sent over the same number of channel uses, butthat the rate, i.e. the number of possible codewords can vary. In the second casewe assume a �xed number of codewords, but allow the number of channel uses overwhich a codeword is sent to vary. The �rst model is closely related to the compositechannel models discussed above; we refer to this as the mutual information model.The second model is related to a model for multiple access communication introducedby Telatar in [4].B. Mutual information modelAs noted above, we use a discrete-time model of the bu�er, where the time betweenadjacent samples corresponds to a block of N channel uses. Once again, assume thateach codeword is sent in one block of N uses, and thus the length of time to senda codeword is less than the coherence time of the channel.6 Let fAng be an ergodicMarkov chain with state space A � R+ which represents the number of bits arrivingat the bu�er input between time n� 1 and n. We assume that fAng is independentof the channel fading and noise processes. Let �A = limn!1 EAn be the averagearrival rate in steady-state. Assume that at the start of the nth block the transmitterremoves Un bits from the bu�er and encodes these into a rate Un=N code word whichwill be transmitted over the next N channel uses. Let Sn denote the bu�er occupancyat the start of the nth block. The dynamics of the bu�er are then given bySn+1 = Sn + An+1 � Un: (7)This is illustrated in Fig. 2. Note as described above, the Un bits to be transmittedare removed from the bu�er before the next An+1 bits arrive. Thus Un � Sn, andSn+1 > An+1 for all n. We assume that the transmitter can choose Un based on thebu�er state Sn, the channel gain Hn, and the source state An.7Let P (h; u) be the required transmission power during a block when the channelgain is h and the transmitter chooses to transmit u bits. We assume that P (h; u)is the power required so that the mutual information rate over the N channel uses6Since a codeword is sent in one channel block, then clearly we must have N >> 1. This assumption maybe relaxed, allowing for codewords that span K > 1 blocks. To do this requires a careful consideration ofhow one selects the rate of a codeword[17].7More generally, Un could be chosen based on the sequence of bu�er, channel and source states up to timen, but for the Markov decision problem considered below there is no bene�t in this.
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Fig. 2. Bu�er dynamics.is equal to u=N . We assume that the receiver knows the current bu�er state at thetransmitter, and thus knows the current transmission rate and power. Of course thisrequires some added overhead (unless the arrival rate is constant, in which case, thereceiver can calculate the current bu�er state). In this case we havelog�1 + jhj2P (h; u)�2 � = u=N; (8)and thus P (h; u) = �2jhj2 (2u=N � 1): (9)For all h with jhj > 0, P (h; u) is an increasing and strictly convex function of u � 0.As with the composite channel model in the previous section, this model is sensiblewhen N is large enough so that P (h; u) is a reasonable indication of the power requiredto transmit at rate u=N with acceptable probability of error. For any N , P (h; u) lowerbounds the required power, for arbitrarily small probability of error. This bound isapproachable as N ! 1. The results in Sections 3 and 4 will only depend on thestrict convexity and monotonicity of P (h; u) and thus apply to any model that allowsfor a variable transmission rate and has a required power with these characteristics.For example, P (h; u) could be the power required to transmit u bits for a particularmodulation scheme such as the variable rate trellis coded M-QAM scheme in [18]. Inthis case, an approximation on the amount of transmitted power needed is given byP (h; u) = �2jhj2 �2u+2rN �Kcwhere r is related to the rate of the convolutional coder used and Kc is a constant thatdepends on the coding gain and the required bit error rate. This is clearly a convexand increasing function of u. Another possibility is to let P (h; u) be a bound on thepower needed to transmit at a given rate over a �xed number of channel uses witha given probability of error. For example P (h; u) could be derived from a randomcoding bound. This idea will be explored in more detail for the model described inthe next section.
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 11Recall we are interested in the average total delay8 experienced by a bit in thesystem in Fig. 1. The total delay is the sum of the delay in the bu�er plus the timefrom when a bit leaves the bu�er until it is decoded. Once a bit leaves the bu�erit is encoded into a codeword which takes 1 block of N channel uses to transmit.Assuming that a codeword is not decoded until it is entirely received, the secondcomponent of delay is Dp + 1 blocks, where Dp accounts for the propagation delayand processing time. We assume that this quantity is �xed for every codeword. Fromthe above, the overall average delay is the average delay in the bu�er plus Dp + 1.Thus we can ignore this constant factor and focus on the average delay in the bu�er.Let S = [0;1) denote the bu�er state space9. Assume that the transmission rate,Un at each time n is speci�ed by a stationary policy, � : S � H � A 7! R+ whichspeci�es Un as a function of the channel state Hn, the bu�er occupancy Sn and thesource state An. Under such a policy the sequence of combined bu�er, channel, andsource states, f(Sn; Hn; An)g forms a Markov chain. The expected long term averagepower with such a policy islim supm!1 1m mXn=1 E (P (Hn ; �(Sn; Hn; An))): (10)We denote this by �P �. Similarly, de�ne �D� to belim supm!1 1m mXn=1 E (Sn)�A : (11)Note that if the Markov chain induced by the policy � is ergodic then we have�P � = EP (H; �(S;H;A)) and �D� = ES�A . By Little's law, �D� is the expected timeaverage delay in the bu�er.C. Telatar ModelNow we look at a di�erent model of the situation in Fig. 1. In the previous modeleach codeword took a �xed amount of time to transmit, namely one block. Thenumber of possible codewords per block varied according to the chosen rate. In thissection we look at a model where one of a �xed number of codewords is chosen, butthe length of time to transmit each codeword is variable. This can be considered asimple model of a hybrid ARQ situation [19].We still consider a discrete-time model for the bu�er, where each time slot cor-responds to N channel uses of a block fading channel. As noted earlier, we do notneed to assume that N >> 1 for the model in this section and indeed may assume8Note we calculate delay for the discrete time model formulated above, if one assumes that this is adiscretized model of a continuous time system, then this will upper bound the delay in the continuous timesystem.9We allow the bu�er to be an arbitrary real value. This is done primarily for mathematical convenience.
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12 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYthat N = 1. In the following, we develop a model in which the bu�er occupancycorresponds to the reliability required by the data in the bu�er plus the remainingreliability required by the data currently being transmitted. We assume that dataarrives in �xed size packets of logM bits.10 In this section we denote the number ofpackets that arrive between time n� 1 and n by f ~Ang, where once again f ~Ang is anergodic Markov chain.11 The transmitter takes a packet and encodes it into one ofM codewords of in�nite length and begins transmitting the message. While trans-mitting the message, the transmitter can adjust the transmission power by scalingthe input symbol by an adjustable gain. Once the receiver can decode the messagewith acceptable probability of error, the transmitter stops transmitting the currentcodeword. The transmitter then proceeds to encode and transmit the next packet inthe bu�er.We assume a random coding ensemble in which the codewords are chosen from aGaussian ensemble. Each input symbol is chosen independently from a N (0; 1) dis-tribution. We allow the transmitter to adjust the transmission power at the start ofeach block. Let pPi be the gain used during the ith block. Thus the transmittedsignal for each channel use during the ith block appears to be chosen from a N (0; Pi)distribution. As in the previous section, we assume that the receiver knows the cur-rent gain used by the transmitter. To model the amount of service time required bya codeword, we use a model derived from Telatar's model for multi-access communi-cation in [4]. Speci�cally, if a given codeword is decoded after K blocks, there is thefollowing random coding bound on the probability of error, for any � 2 (0; 1]:Pe � exp � lnM �N KXi=1 Eo(�; jhij2Pi)! ; (12)where Eo(�; jhij2Pi) = � ln�1 + jhij2Pi�2(1 + �)� (13)and fhig is the sequence of channel gains during the K blocks. Suppose there is amaximal allowable error probability of �. This error probability is achieved if thecodeword is decoded after K blocks whereN KXi=1 Eo(�; jhij2Pi) � � lnM � ln � (14)10This assumption is made primarily for mathematical convenience; if we allowed an arbitrary number ofbits to arrive at each time, we would have to deal with the situation where fewer than logM bits remainedin the bu�er.11The reason for this change in notation is that An will now be used to denote the amount of \reliability"required by the arriving packets.
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 13for some �xed12 � 2 (0; 1]. Thus once (14) is satis�ed, the transmitter can stoptransmitting the current codeword. Since the transmitter has perfect CSI, it willknow when this occurs. Without perfect CSI, some form of feedback from the receiveris needed to notify the transmitter when to stop transmitting. As in [4], (� lnM �ln �) can be considered the demand of a codeword once it enters the encoder andNEo(�; jhij2Pi) as the service given to that codeword in the ith time step.Let Sn be (� lnM � ln �) times the number of packets in the bu�er at time nplus the remaining amount of \service" required by the current codeword. We makethe approximation that when a codeword receives its service, the next codewordimmediately begins service. Practically, one would wait to begin transmitting thenext codeword until the next channel use. If the typical service time of a codewordis many channel uses this e�ect will be small. With this approximation, the processfSng evolves according to13: Sn+1 = Sn + An+1 � Un (15)where An = (� lnM � ln �) ~An and Un = NEo(�; jHnj2Pn). We think of (15) as thedynamics of a new bu�er with arrival process fAng and departure process fUng.Once again this is a discrete time bu�er where the bu�er occupancy can take on anynonnegative real value.As in the previous section, we assume that at each time n, the transmitter canchoose Un based on the current channel state, Hn, bu�er state, Sn, and source stateAn. Since Un = NEo(�; jHnj2Pn), a given choice of Un = u when Hn = h requiresPn = �2(1+�)jhj2 �e( uN� ) � 1�. Motivated by this, we de�ne P (h; u) to be:P (h; u) = �2(1 + �)jhj2 �e( uN� ) � 1� : (16)As in the previous section we note that this is an increasing and strictly convexfunction of u for any h such that jhj > 0.We again assume that the transmission rate Un is speci�ed by a stationary policy� : S � H � A 7! R+ . Under policy �, the expected long term average power, �P �,and the expected time average delay in the bu�er, �D�, are again given by (10) and(11) respectively.This completes the description of the two models for the bu�er dynamics. In thisnext section we begin an analysis of these models.12The relation in (14) holds for any �xed � 2 (0; 1]. One would naturally like to choose the � which is\optimum". For the Markov decision problem in the next section, this corresponds to the � which yields theminimum weighted combination of average delay and average power. Note varying � changes both the arrivalprocess and the amount of energy needed; it is not clear that this optimization can be done analytically.13As in the previous section note that Un � Sn and Sn+1 � An+1 for all n.
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14 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYIII. Optimal Power/Delay SolutionsIn the previous section we formulated two models for the situation in Fig. 1. Thesemodels have many characteristics in common. In both cases, we are interested incontrolling a bu�er with dynamics given by (7). At each time n, the transmissionrate u is chosen based on the bu�er occupancy Sn, the channel gainHn and the arrivalstate An via a stationary policy �. The sequences fAng and fHng are independentand both are stationary ergodic Markov chains. The power required to transmit atrate u when the channel gain is h is denoted by P (h; u); this is a strictly convex andincreasing function of u for all h 2 H. Finally, we are interested the trade-o� betweenminimizing the average power and minimizing the average delay, as given by (10)and (11). In this section we will begin to characterize this trade-o�. The followinganalysis will only rely on these general characteristics and thus applies to both of theprevious models as well as any other model with these characteristics.We are interested in two objectives, minimizing the average delay and minimizingthe average power. Both of these criteria can not be minimized at the same time(except in the degenerate case, where the arrival rate and channel state are �xed for alltime). Consider minimizing a weighted combination of the two criteria. Speci�cally,for � > 0, we seek to to �nd the policy � which minimizes:14lim supm!1 1m mXn=1 E (P (Hn ; �(Sn; Hn; An)) + �Sn�A ): (17)The weighting factor � indicates the relative importance of the bu�er delay over theaverage power; larger values of � correspond to more placing more importance ondelay. For the above models, the problem of �nding the policy which minimizes (17)is an average cost Markov decision problem with state space S � H � A. At eachtime step the transmitter chooses an action, namely the transmission rate, and incursa per stage cost of (P (Hn; �(Sn; Hn; An)) + � Sn�A ). Such problems can be solved viadynamic programming techniques [20]. For the problem at hand, it can be shownthat there always exists a stationary policy � which is optimal and satis�es Bellman'sequation for the average cost problem.15Assume that �� is an optimal policy for a given �. Let �P �� and �D�� be thecorresponding average power and delay, as given in (10) and (11). Note that �P ��must be the minimum average power such that the average delay is less than �D��.For any D � 1, de�ne P �(D) to be the minimum average power such that the averagedelay is less thanD. Thus, by the above argument, P �(D�) = �P ��. We refer to P �(D)as the (optimum) power/delay curve. Varying � and �nding the optimal policy foreach value can provide di�erent points on the power/delay curve. It is natural to then14The weighting factor � can be thought of as a Lagrange multiplier on an average delay constraint.15One can also show several structural properties of optimal policies for this problem. We refer the readerto [17] for more details of this line of analysis.
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 15ask if all values of P �(D) can be found in this way, with an appropriate choice of �.This problem can be viewed as amulti-objective optimization problem [21]. By this wemean an optimization problem with a vector valued objective function f : X 7! Rn .In our case f has two components corresponding to the average delay and averagepower. For such problems, a feasible solution, x is de�ned to be Pareto optimal ifthere exists no other feasible x̂ such that f(x̂) < f(x), where the inequality is to beinterpreted component-wise. It can be seen that the points f(P �(D); D) : D � 1gare a subset of the Pareto optimal solutions for this problem.16 For a general multi-objective optimization problem, not every Pareto optimal solution can be found byconsidering problems with scalar objectives k0f where k 2 Rn . For the problem athand, except in the degenerate case where the channel and arrival processes are bothconstant, every point on P �(D) (and thus every interesting Pareto optimal solution)can be found by solving the minimization in (17) for some choice of �. This also followsdirectly from the characterization of P �(D) given in the following proposition.Proposition 3.1: The optimum power/delay curve, P �(D), is a non-increasing, con-vex function of D � 1. Except in the degenerate case where channel and arrivalprocesses are both constant, it is a decreasing and strictly convex function of D.Proof: That P �(D) is non-increasing is obvious. We show that it is convex. LetD1 and D2 be two values of delay with corresponding values P �(D1) and P �(D2). Wewant to show that for any � 2 [0; 1],P �(�D1 + (1� �)D2) � �P �(D1) + (1� �)P �(D2): (18)We will prove this using sample path arguments. Let fHn(!)g1n=1 and fAn(!)g1n=1 bea given sample path of channel states and arrival states. Let fU1n(!)g be a sequenceof control actions corresponding to the policy which attains P �(D1). Let fS1n(!)g bethe corresponding sequence of bu�er states. Likewise de�ne fU2n(!)g and fS2n(!)gcorresponding to P �(D2). As noted previously, U in(!) � Sin(!) for i = 1; 2, for all !,and for all n. Now consider the new sequence of control actions, fU�n (!)g, where forall n, U�n (!) = �U1n(!) + (1� �)U2n(!):Let fS�n(!)g be the sequence of bu�er states using this policy. Assume at timen = 0, S�0 (!) = S10(!) = S20(!) = 0 for all sample paths, !. Using that Sin+1(!) =Sin(!) + An+1(!) � U in+1(!) for i = 1; 2 and all n � 0, and recursion, we have16Assume f(P �(D); D) : D � 1g is not the entire set of Pareto optimal solutions. From Prop. 3.1, for anyremaining Pareto optimal point ( ~P; ~D), it must be that P �( ~D) � ~P . Furthermore, inffD : P �(D) <1g isonly value of delay such points could have. Thus these other Pareto optimal solutions are not very interestingto us.
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16 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYS�n(!) = �S1n(!) + (1� �)S2n(!) for all n. Thus,limm!1 1m mXn=1 ES�n (!)�A � �D1 + (1� �)D2; (19)where the expectation is taken over all sample paths. From the convexity of P (h; u)in u, we have for all nP (Hn(!); U�n (!)) ��P (Hn(!); U1n(!))+ (1� �)P (Hn(!); U2n(!)):Again, summing and taking expectations we havelimm!1 1m mXn=1 EP (Hn(!); U�n(!))� �P �(D1) + (1� �)P �(D2): (20)Thus we must have P �(�D1 + (1� �)D2) � �P �(D1) + (1� �)P �(D2) as desired.The �nal statement in the proposition follows directly from the above and theresults in the next section.De�ne Pd(a) = EHP (H; a) for any a � 0. For the model of Section II-B, Pd(a)corresponds to the solution of (5) with R = a=N . This is the minimum average powerrequired to transmit at rate a in every channel state. As formulated, the delay in thebu�er must be at least one time unit. The only way for the average delay to be equalto one is if Un = An for all n. Thus we have :P �(1) = ZA Pd(a) d�A(a): (21)For the mutual information model, if we have a constant arrival rate of �A and anaverage delay constraint of 1, then the minimum average power is Pd( �A), whichcorresponds to the delay-limited capacity of the channel. For channels whose delay-limited capacity is zero, Pd( �A) must then be in�nite for any �A > 0.For any a � 0, de�ne Pa(a) to be the solution tominimize	:H7!R+ EP (H;	(H))subject to : E (	(H)) � a: (22)We have restricted 	 to be a function only of the channel state H in this optimization.For the model of Section II-B, Pa(a) corresponds to the solution to (6), i.e. thiscorresponds to the expected capacity of the channel. Note that Pa(a) is an increasing



www.manaraa.com

BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 17

1 1.5 2 2.5 3 3.5 4
9

10

11

12

13

14

15
Power/Delay Curve

P
ow

er

Delay

P
a
(A)

P
d
(A)

P*(D)

Fig. 3. Example of power/delay curve.and strictly convex function of a; this follows directly from the strict convexity andmonotonicity of P (h; u). Let 	a(h) be a feasible rate allocation which achieves Pa(a).It can be seen that this rate allocation will be almost surely unique and is a functionof only jhj. Furthermore, it is a continuous and non-decreasing function of jhj for alla > 0. Likewise, for any h 2 H, 	a(h) is a continuous and non-decreasing function ofa. The quantity Pa( �A) is the minimum average power needed to transmit at averagerate �A with no other constraints. Thus Pa( �A) is a lower bound to P �(D) for allD � 1. If both the channel and arrival processes are constant, then Pa( �A) = Pd( �A);in this case, the power delay curve is a horizontal line. Assuming that the channel andarrival processes are not both constant, the only way a stationary policy � can have�P � = Pa( �A) is if �(s; h; a) = 	 �A(h) for all (s; h; a) 2 S�H�A, except possibly a setwith measure zero. Such a policy results in �D� =1. In other words, P �(D) > Pa( �A)for all �nite D. In the next section we shall see that this bound can be approachedas D!1.Example: Figure 3 shows an example of the power/delay curve for a channel withmemoryless fading and two states (jHj = 2); in one state jhj2=�2 = 0:03 and inthe other state jhj2=�2 = 0:09. For this example, the sequence of channel statesis i.i.d. and each state is equally likely. The arrival process has a constant rate of�A=N = 0:5 and the power needed to transmit u bits is given by P (h; u) in (9),corresponding to the mutual information model. To calculate the optimal policy,we discretized the bu�er state space and allowable control actions. Using dynamicprogramming techniques, P �(D) was obtained computationally (within a small errormargin) for various choices of �; the computed values of P �(D) are indicated in the
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18 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORY�gure. For this example Pd( �A) = 14:42 and Pa( �A) = 9:55. Pa( �A) is indicated by ahorizontal line in the �gure.IV. Asymptotic AnalysisIn this section we characterize the behavior of the tail of the power/delay curve,P �(D), as the bu�er delayD !1. This corresponds to the solution of (17) as � ! 0.Throughout this section we restrict ourselves to the case of memoryless arrivals andmemoryless fading, i.e. both fAng and fHng are sequences of i.i.d. random variables.This restriction is made primarily to simplify the following exposition. We also assumethat the arrival state space A is a compact subset of R+ . Let Amin = infA andAmax = supA. With these assumptions, we show that P �(D) ! Pa( �A) as D ! 1.We look at the rate17 at which this limit is approached and show that P �(D)�Pa( �A) =�( 1D2 ). First we bound the rate of approach. Then we show that this bound is tight.Furthermore in proving that the bound is tight we provide a sequence of policieswith a relatively simple structure which exhibit the optimal rate of convergence. Theapproach in this section is closely related to Tse's work [22] on bu�er control forvariable-rate lossy compression. In [22] the input rate into a bu�er is controlled bychanging the quantizer used to compress blocks of real valued data. The goal isto optimally trade-o� distortion and bu�er overow probability. In the problem athand, the bu�er is controlled by varying the output rate and we interested in tradingo� power and average delay. There are many similarities between the mathematicalstructure underlying these problems.To characterize the behavior of this tail, we will consider a sequence of policiesf�kg, such that as k ! 1, �D�k ! 1 and �P �k ! Pa( �A). Since in this section thearrival process is assumed to be memoryless, a stationary policy � will only dependon the bu�er state and the channel state, i.e. � : S � H 7! R+ . We restrict ourattention to the class of policies that satisfy the following technical assumptions.De�nition: A sequence of bu�er control policies f�kg is admissible (for a givenfading process, fHng and arrival process fAng) if it satis�es the following assumptions:1. For all k, �D�k <1, and limk!1 �D�k =1.2. Under each policy, �k, fSng forms an ergodic Markov chain; we denote the steady-state distribution under the kth policy by ��kS .3. There exists an � > 0, a � > 0 and a M > 0 such that for all k > M and for alls � 2E (S�k ), Pr(A� �k(S�k ; H) > �jS�k=s) > �17The following standard notation is used to compare the rates of growth of two real-valued sequences fangand fbng: an = o(bn) if limn!1 anbn = 0; an = O(bn) if lim supn!1 janjjbnj < 1; an = 
(bn) if bn = O(an);and an = �(bn) if an = O(bn) and an = 
(bn).
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 19where S�k , A and H are random variables with respective state spaces S, A, andH and whose joint distribution is the steady-state distribution of (Sn; An; Hn) underpolicy �k.We are interested in sequences of policies which characterize the tail behavior ofP �(D) as D!1. The �rst assumption says a sequence of policies is admissible onlyif the average delay of these policies has the desired behavior. Under any stationarypolicy, the sequence of bu�er states is a Markov chain. The policy, along with thefading process and arrival process, determines the transition kernel for this Markovchain. By the second assumption, for each policy in an admissible sequence, thisMarkov chain is ergodic. This will be true if the transition kernel is \well-behaved"[23]. The third assumption means that for large k and any bu�er state s < 2E (S�k ),there is a positive steady-state probability that the next bu�er state is bigger thans+ �. If Amin > � and Pr(H = 0) > �, then this assumption must be satis�ed by anypolicy that uses �nite power. If this is not the case, then this is a restriction on theallowable policies.18We also assume that at a = �A, the �rst and second derivatives of Pa(a) exist andare non zero. Recall, Pa(a) is a strictly convex and increasing function of a. Forsuch a function, the �rst and second derivatives of Pa(a) exist and are non-zero atevery point except for a set with measure zero.19 Thus, this is not a very restrictiveassumption.Let ��(s) = E (A��(S� ; H)jS�=s) denote the expected drift given that the bu�eris in state s under policy �. For any admissible sequence of policies f�kg, the averagedrift over the tail of the bu�er must be negative when k is large enough. This isstated in the following lemma.Lemma 4.1: LetM , � and � be as given in the de�nition of an admissible sequence.For any admissible sequence of bu�er control schemes f�kg, for each k > M , thereexists an sk 2 S such thatZs>sk ��k(s) d��kS (s) � ���216E (S�k )Proof: Appendix A.We use this result to establish the following bound on the rate of convergence:Proposition 4.2: Any admissible sequence of policies f�kg must satisfy�P �k � Pa( �A) = 
((1= �D�k)2):Proof: Appendix B.18It can be argued that for any sequence of policies satisfying the �rst condition and such that �P�k !Pa( �A), then provided that both An and Hn are not constant for all n, assumption 3 must hold, except notnecessarily uniformly over s.19This follows from Lebesgue's theorem which states that a monotonic function is di�erentiable almosteverywhere [24].
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1/υFig. 4. A simple policy with drift �.In other words, the \tail" of P �(D) converges to Pa( �A) at least as slowly as 1D2 .Next we show that this bound is tight. To do this we give a sequence of policies,which achieve the rate of convergence given by the bound, i.e. we show that thereexists a sequence of policies �k, such that �P �k�Pa( �A) = O((1=D�k)2). Moreover, thesequence of policies that we use have a relatively simple structure to them. First wedescribe the type of policies to be used. Then, the convergence rate of these policiesis demonstrated. We are still considering the case where the arrival process and thefading are memoryless.De�nition: For a given � > 0, partition the bu�er state space into two distinctsets: [1=�;1) and [0; 1=�). Recall, 	a : H 7! R+ denotes the policy with averagerate a which achieves Pa(a). Such a policy depends only on the channel state. De�nea simple policy with drift �, to be a policy � with the form:20�(s; h) = (	 �A+�(h) if s 2 [1=�;1)	max( �A��;0)(h) if s 2 [0; 1=�):In other words, with a simple policy the only dependency of the transmission rateon the bu�er occupancy is through a simple threshold rule. Under such a policy, thedrift in any bu�er state s � 1=� will be �� and the drift in any state s � 1=� willbe � provided that � < �A (otherwise the drift will be �A). Thus these policies tend toregulate the bu�er towards the state 1=� as illustrated in Figure 4. Lemma 4.3 belowgives an upper bound on the average bu�er delay under a simple policy. This bounddepends on the semi-invariant moment generating function, (r), of A � 	 �A+�(H).This is de�ned as (r) = ln(E [e(A�	 �A+�(H))r]), where the expected value is taken withrespect to both A and H. Since EA �	 �A+�(H) < 0, (r) will have a unique positiver� (where r� =1 when no �nite root exists) [25].Lemma 4.3: For a simple policy � with drift �, the average delay satis�es:�D� � 1=��A + er�(�)�(�)�Ar�(�)20More generally, we could partition the bu�er into the sets [0; K=�) and [K=�;1) where K > 0. Thesesets could then be used in the de�nition of a simple policy. The following results still hold with such ageneralization.
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 21where �(�) is a nonnegative function such that �(�) ! 0 as � ! 0, and r�(�) isthe unique positive root of the semi-invariant moment generating function of A �	 �A+�(H).The proof of this lemma can be found in Appendix C. There are two key ideasin this proof. First, Little's law is used to relate the average delay to the averagebu�er occupancy. Second, for the memoryless case, while the bu�er process stays in[1=�;1) it behaves as a random walk with a negative drift. Thus the steady-stateprobability that the bu�er is in state s can be bounded by a function which decaysexponentially, with an exponent given by r�(�). To show that simple policies havethe desired convergence rate it is useful to characterize how r�(�) changes with �.The is given in the following lemma whose proof can be found in Appendix D.Lemma 4.4: Let r�(�) denote the unique nonzero root of the semi-invariant mo-ment generating function of A � 	 �A+�(H) (for � 6= 0). Assume that for all � in aneighborhood of 0, that d2d�2 Eer� (�)(A�	 �A+�(H)) exists and that21d2d�2Eer� (�)(A�	 �A+�(H)) = E d2d�2 er�(�)(A�	 �A+�(H)):Then, r�(0) = 0 and dr�(�)d� �����=0 = 2Var(A� 	 �A(H)) :Using the above two lemmas it can be shown that a sequence of simple policies canachieve the bound given in Proposition 4.2.Proposition 4.5: Let f�kg be a sequence of simple policies with drifts f�kg, wheref�kg is a nonnegative decreasing sequence such that �k ! 0 as k ! 1. Then wehave �P �k � Pa( �A) = O(( 1D�k )2).Proof: Appendix E.A simple policy as de�ned above requires splitting the bu�er into two regions.In each region a policy was used that depended only on the current channel state.We have assumed that in addition to the current channel state, the receiver knowsthe current bu�er state of the transmitter, so it would know the transmission rateand power used. Conveying this information to the receiver requires some overhead.When a simple policy is used, the receiver only needs to know in which region of thebu�er the current bu�er state lies; this requires only one bit of overhead. An even21As an example of when these assumptions will hold, assume that jAj < 1 and jHj < 1. In this caseif the second derivative of 	 �A+�(h) with respect to � exists and is continuous at � = 0 for all h, then theabove assumptions hold. When P (h; u) corresponds to transmitting at capacity as in (9), this will be truefor all but a �nite number of values of �A. These values correspond to those rates �A for which the \waterlevel" 1� in some state h is exactly equal to �2jhj2 (cf. (3)).
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22 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYsimpler policy would be one with no dependence on the bu�er state, i.e. a policywhich only depended on the channel gain. With such a policy, the receiver wouldrequire no information about the transmitter's bu�er state. Proposition 4.6 belowshows that a sequence of such policies can not achieve the optimal convergence rate.Before stating this proposition some preliminary notation is established.We want to consider a sequence of policies f�kg which depend only on the channelstate. Let �k = �A�E�k (H); the average transmission rate in every bu�er state s 2 Sis then �A+�k. For the bu�er to be stable under policy �k it must be that �k > 0. Toprove Proposition 4.6, we will use a result similar to Lemma 4.4. However, we do notwant to restrict the policy �k to be a policy of the form 	x as in Lemma 4.4. Insteadwe assume that that each policy �k is determined by an arbitrary parameterizedfunction �x. Speci�cally, for every x � �A, let �x : H 7! R+ be an arbitrary policywhich depends only on the channel gain such that E�x(H) = x. Assume that eachpolicy �k is given by �k = � �A+�k . Let r�(�) denote the unique nonzero root of thesemi-invariant moment generating function of A � � �A+�(H). Assume that for all �in a neighborhood of 0, that d2d�2 Eer� (�)(A�� �A+�(H)) exists and thatd2d�2Eer� (�)(A�� �A+�(H)) = E d2d�2 er�(�)(A�� �A+�(H)):This is the same set of assumptions used in Lemma 4.4; by examining the proof ofthat lemma, it is apparent that the lemma also applies here. Speci�cally,dr�(�)d� �����=0 = 2Var(A� � �A(H)) :Any sequence of policies �k satisfying the above assumptions can not achieve theoptimal convergence rate; this is stated in the following proposition.Proposition 4.6: Let f�kg be a nonnegative decreasing sequence such that �k ! 0as k !1. Let f�kg be a sequence of policies such that for each k �k = � �A+�k , where�x satis�es the above assumptions. Then �P �k � Pa( �A) = 
( 1D�k ).Proof: Appendix F.Thus using more than one policy allows the rate of convergence to be squared.Some intuition as to why two policies are needed is given by the following argument.With two policies we regulate the bu�er towards the point 1� , while with one policy(with �nite average delay) the bu�er is regulated towards the empty state. Whenconsidering average delay, keeping the bu�er empty appears more desirable. However,when considering the average power, there is a disadvantage to keeping the bu�ernearly empty{ when the bu�er is nearly empty, one can not take advantage of a goodchannel by transmitting at a high rate, which is desirable for minimizing power. Byusing two policies and regulating the bu�er towards the point 1� , a better balance isobtained between these two considerations.
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 23V. ConclusionsIn this paper we have looked at several simple models of communication over time-varying channels that incorporate bu�er constraints. These models were chosen toillustrate the possible trade-o�s between average power and average delay. To ac-complish this we formulated a bu�er control problem which was analyzed using ideasfrom Markov decision theory. We provided several characteristics of the optimalpower/delay trade-o� curve. In particular we characterized the asymptotic behaviorof this trade-o� in the regime of large bu�er delay. In this asymptotic regime, wegave simple bu�er control policies which exhibit the optimal convergence rate.In conclusion we mention several directions in which this work can be extended.Instead of average delay, one can consider other network level quality of service in-dicators. For example with a �nite bu�er the probability of bu�er overow could beconsidered. If the arrival rate is constant, then the overow probability correspondsto the probability of a maximum delay constraint being violated. Similar results canbe shown in this setting. In this work we assumed that the transmitter has perfectchannel state information. One can consider models that relax this assumption. Fi-nally, we only considered single user channels. Models with multiple users can beconsidered. With more than one user, issues of allocating resources between usersbecomes important as does the coordination of the users.Finally we mention some architectural issues related to this work. The problemformulation in this paper addresses issues which lie at the boundary of physical layerissues and higher layer network issues. From an architectural point of view there aremany advantages to separating these layers. But as we have shown, in the contextof mobile wireless communication it is not clear that the boundary between theselayers should have the same characteristics as in a �xed wire-line network. One wayto think about this is to ask what is a good \black box" abstraction for higher layersto have of the physical layer in such a network. In a wired point-to-point network,this abstraction is typically that the physical layer is a \packet pipe" that can deliverpackets at a �xed rate, �xed delay, and some small probability of error. In wirelessnetwork, one has the potential to make a pipe with a variable rate, a variable delayand/or a variable probability or error. Furthermore one may even think of these asparameters which the next layer can adjust along with the transmission power. Inthis context, there are clearly many issues that extend beyond the simple modelsaddressed here. AppendicesA. Proof of Lemma 4.1Proof: Let M , � and � be as in the de�nition of admissibility and assume thatk > M . Let Fn = An � Un�1; this represents the net change in the bu�er occupancy
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24 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYbetween time n� 1 and n. Thus, assuming the bu�er is empty at time 0, we haveSn = nXm=1Fm: (23)By assumption, the bu�er process, Sn, reaches a steady state as n ! 1. Thus theMarkov inequality implies: limn!1Pr(Sn � 2E (S�k )) � 12 ; (24)and so limn!1Pr(Sn < 2E (S�k )) > 12 : (25)Let m = 4E (S�k )=� where � divides 2E (S�k ). Consider partitioning [0; 2E (S�k )) intothe following m segments: [0; �=2); [�=2; �); : : : ; [(m � 1)�=2; 2E(S�k )), where eachsegment has a length of �=2. Let [(c � 1)�=2; c�=2) be one of these segments whichhas the maximal probability with respect to ��k . Thus,��kS ([(c� 1)�=2; c�=2)) � 12m = �8E (S�k ) : (26)Let sk = c�=2 and de�ne the process fŜng byŜn = maxfSn; skg: (27)Thus Ŝn is equal to Sn restricted to [sk;1). Let F̂n = Ŝn � Ŝn�1 be the net changein Ŝn, so that Ŝn = nXm=1 F̂m: (28)Thus limn!1 E 1n Ŝn = limn!1 E 1n nXm=1 F̂m: (29)By assumption �D�k <1; therefore limn!1 ESn <1. Furthermore, Ŝn � Sn + skfor all n, which implies that E (Ŝn) � E (Sn) + sk <1. Thus,limn!1 E 1n Ŝn = 0: (30)
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 25The quantity F̂n can be considered a reward gained at time n � 1 by the originalergodic Markov chain fSng. Thus we havelimn!1 E 1n nXm=1 F̂m = ZS liml!1 E (F̂l jSl�1=s) d��S(s): (31)Here liml!1 E (F̂l jSl�1=s) is the steady-state expected reward in state s. Using (30),(31), and (28) yields: ZS liml!1 E (F̂l jSl�1=s) d��S(s) = 0: (32)Next we relate E (F̂l jSl�1=s) to expected changes in the original process. We considerthree cases:1. First when Sl�1 � sk, then F̂l � Fl and thusliml!1 E (F̂l jSl�1=s)� liml!1 E (Fl jSl�1=s) = ��(s); 8 s � sk: (33)2. Next when (c� 1)�=2 � Sl�1 < c�=2 = sk, F̂l is nonnegative. Thus,E (F̂l jSl�1=s) � �=2Pr(F̂l > �=2jSl�1=s) (34)� �=2Pr(Fl > �jSl�1=s): (35)Here (34) follows from the Markov inequality; (35) follows from the the fact thatF̂l � Fl � �=2 for (c � 1)�=2 � Sl�1 � c�=2. Next taking the limit and using theadmissibility of �, we have:liml!1 E (F̂l jSl�1=s) � liml!1 �=2Pr(Fl > �jSl�1=s)� ��2 ; 8 s 2 [(c� 1)�=2; c�=2): (36)3. Finally, when Sl�1 < (c� 1)�=2, F̂l is also non-negative, and thusliml!1 E (F̂l jSl�1=s) � 0; 8 s < (c� 1)�=2: (37)Combining (33), (36), and (37) into (32) yields:Z((c�1)�=2;c�=2] ��2 d��S(s) + Zs>sk ��(s) d��S(s) � 0: (38)The �rst term can be bounded as follows using (26):Z((c�1)�=2;c�=2] ��2 d��S(s) � ��216E (S�k ) : (39)Substituting this into (38) yields the desired result.
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26 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYB. Proof of Proposition 4.2Proof: For the kth policy, let ��k(s) denote the expected drift in state s. Thusthe average transmission rate conditioned on being in state s is E (�k(S�k ; H)jS�k=s) =�A � ��k(s). Recall that Pa(x) is the minimum average power required to transmitat average rate x. Thus the average power used when the bu�er is in state s is lowerbounded by Pa( �A���k(s)). Averaging over the bu�er state space we have:�P �k � ZS Pa( �A���k(s)) d�S(s) (40)Via a �rst order Taylor expansion around x = �A, Pa(x) can be written as:Pa(x) = Pa( �A) + P 0a( �A)(x� �A) +G(x� �A) (41)where the remainder term G(x) has the following properties: (i) G(x) is strictlyconvex, (ii) for x 6= 0, G(x) > 0 and G(0) = 0, and (iii) G0(x) > 0 for x > 0and G0(0) = 0. These all follow from the strict convexity and monotonicity of Pa.Substituting this into (40) yields:�P �k � Pa( �A) � P 0a( �A) ZS(���k(s)) d�S(s)+ ZS G(���k(s)) d�S(s) (42)= ZS G(���k(s)) d�S(s): (43)Here we have used that ZS ��k(s) d�S(s) = 0 (44)for any policy �k which has ES <1. This follows from the fact that the bu�er sizeis in�nite and thus no bits are lost due to overow. Let sk be as de�ned in Lemma



www.manaraa.com

BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 274.1 and assume that k > M so that the lemma applies. Then we have�P �k � Pa( �A)� Zs>sk G (���k(s)) d�S(s) (45)= Zs>sk G (���k(s)) d�S(s) + �S([0; sk))G(0) (46)� G�Zs>sk ���k(s) d�S(s) + �S([0; sk))G(0)� (47)= G�Zs>sk ���k(s) d�S(s)� (48)� G� ��216ES�k � : (49)In (45), (46) and (48) we have used that G(x) � 0 and G(0) = 0. Eq. (47) followsfrom Jensen's inequality and (49) follows from Lemma 4.1. Finally, expanding G ina Taylor series around 0, and using that G0(0) = 0 we have:�P �k � Pa( �A) � 12G00(0)� ��216ES�k �2 + o � ��216ES�k �2! : (50)That G00(0) exists and is non-zero follows from the assumption that the second deriva-tive of Pa(x) exists and is non-zero at x = �A. Thus we have �P �k � Pa( �A) =
(( 1E(S�k ))2). Using Little's law, this gives us �P �k � Pa( �A) = 
((1=D�k)2) as de-sired. C. Proof of Lemma 4.3Proof: From Little's law we have:�D� = E (S)�A ; (51)where E (S) is the expected bu�er occupancy in steady-state. This can be written asthe integral of the complimentary distribution function of S, i.e.E (S) = Z 10 Pr(S > s) ds: (52)Upper bounding Pr(S > s) by 1 for s � 1=�, yields:E (S) � 1=� + Z 10 Pr(S > s + 1=�) ds: (53)
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28 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYFor all � � 0, let �(�) = supf	 �A+�(h)� 	 �A��(h) : h 2 Hg:We show that �(�) is non-negative and converges to zero as � ! 0. As noted inSect. III, 	a(h) is a continuous function of jhj for all a � 0. Recall H is assumed tobe compact; thus 	a(h) will be bounded for all a. Therefore, �(�) is also bounded.Likewise, since 	a(h) is non-decreasing in a for all h, �(�) will be non-negative.Finally, for all h, 	a(h) is continuous in a; thus, for all h, f	 �A+�(h) � 	 �A��(h)gconverges monotonically to 0 as � ! 0. Thus, by Dini's theorem [26], lim�!0 �(�) = 0.Next we bound Pr(S > s + 1=�). Consider a second bu�er process f �Sng de�nedas follows. This second process only uses the policy 	 �A+� and is restricted to stayin [1=�;1) for all time. Speci�cally, let �Un = 	 �A+�(Hn) and let �Sn+1 = maxf �Sn +An+1 � �Un; An+1; 1=�g. We assume that this bu�er process and the original bu�erprocess observe the same sequence of channel and source states. Furthermore assumethat at time 0, �S0 = maxfS0; 1=�g. We claim that for all n � 0, �Sn � Sn � �(�).This will be shown by induction on n. By assumption �S0 � S0 � S0 � �(�). Assumeat time n, �Sn � Sn � �(�), we will show that this holds for time n+ 1. Consider thefollowing two cases:Case 1: Sn > 1=�. In this case �Un = Un, and thus,�Sn+1 � maxf �Sn � �Un + An+1; An+1g� maxfSn � �(�)� Un + An+1; An+1g� maxfSn � Un + An+1; An+1g � �(�)= Sn+1 � �(�)Case 2: Sn � 1=�. In this case �Sn � 1=� � Sn and �Un � Un + �(�). Thus�Sn+1 � maxf �Sn � �Un + An+1; An+1g� maxfSn � (Un + �(�)) + An+1; An+1g� maxfSn � Un + An+1; An+1g � �(�)= Sn+1 � �(�):Thus we have �Sn � Sn � �(�) for all n � 0. From this it follows that for all n � 0and all s, Pr(Sn > 1=� + s) � Pr( �Sn > 1=� + s� �(�)). Letting n!1 we havePr(S > 1=� + s) � Pr( �S > 1=� + s� �(�))where S and �S are random variables with the steady-state distributions for the re-spective processes. Note, the process f �Sng is a random walk restricted to [1=�;1).
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 29Therefore22. Pr( �S > 1=� + s� �(�)) � e�r�(�)(s��(�))and thus, Pr(S > 1=� + s) � e�r�(�)(s��(�)):Substituting this into (53) and carrying out the integration yields:E (S) � 1=� + Z 10 e�r�(�)(s��(�)) ds (54)= 1=� + er�(�)�(�)r�(�) (55)Finally, substituting this into (51) gives the desired result.D. Proof of Lemma 4.4Proof: From the de�nition of r�(�) we have, for all �,Eer� (�)(A�	 �A+�(H)) = 1: (56)Di�erentiating this equation twice with respect to �, and using the assumption in thelemma, we have, for all � in a neighborhood of 0,E d2d�2 er�(�)(A�	 �A+�(H)) = 0:Letting S(�) = dr�(�)d� then,E d2d�2 er�(�)(A�	 �A+�(H))= Eer� (�)(A�	 �A+�(H))(�(A� 	 �A+�(H))S(�)� r�(�)� � dd�	 �A+�(H)��2 + (A� 	 �A+�(H))� dd�S(�)�� 2S(�)� dd�	 �A+�(H)�� r�(�)� d2d�2	 �A+�(H)�)= 022This inequality is referred to as the Kingman bound when applied to G/G/1 queues [25]
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30 TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORYNext we evaluate this at � = 0. In doing this, note that for � = 0, the randomvariable A� 	 �A(H) is zero mean, and thus r�(0) = 0. Additionally note that sinceE	 �A+�(H) = �A+ �then dd�	 �A+�(H) = 1 and d2d�2	 �A+�(H) = 0. Thus we haveS(0)2Var(A� 	 �A(H))� 2S(0) = 0: (57)This equation has two roots, corresponding to the two roots of ln(Eer(A�	 �A (H))) = 0.The root S(0) = 0 corresponds to the root of the log moment generating functionthat is always at zero, and the root at 2Var(A�	 �A(H)) corresponds to the non-zero root,as desired. E. Proof of Proposition 4.5Proof: Let f�kg be a sequence of simple policies with drifts f�kg as in thestatement of the proposition. We show that �D�k = O( 1�k ) and �P �k � Pa( �A) =O((�k)2). The desired result then follows directly.First we show that �D�k = O( 1�k ). From Lemma 4.3 we have�D�k � 1=�k�A + er�(�k)�(�k)�Ar�(�k) (58)The �rst term on the right hand side of this bound is clearly O(1=�k). We focus onthe second term of (58).Taking the Taylor series of r�(�) around � = 0 and using Lemma 4.4 we haver�(�) = 0 + �� + o(j�j) (59)where � = 2Var(A�	 �A(H)) . Recall in Lemma 4.3 it was shown that �(�)! 0 as � ! 0.From this it follows that r�(�)�(�) = ��(�)�+o(j�j). With these expansions we haveer�(�k)�(�k)�Ar�(�k) = e��(�k)�k+o(�k)�A(��k + o(�k)) : (60)Now since: limk!1 �ke��(�k)�k+o(�k)�A(��k + o(�k)) = 1�A� (61)it follows that: er�(�k)�(�k)�Ar�(�k) = O(1=�k) (62)
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BERRY & GALLAGER: COMMUN. OVER FADING CHANNELS WITH DELAY CONSTRAINTS 31and therefore �D�k = O(1=�k) as desired.Next we show that �P �k �Pa( �A) = O((�k)2). For the simple policy �k, the averagepower is �P �k = ��kS ((1=�k;1))Pa( �A+ �k)+ ��kS ([0; 1=�k])Pa( �A� �k) (63)Taking the Taylor series of P(x) around x = �A we have�P �k = Pa( �A) + P 0a( �A)(��kS ((1=�;1))�k� ��kS ([0; 1=�])�k) +O((�k)2) (64)Now ��kS ((1=�;1))�k � ��kS ([0; 1=�])�k � 0 and thus �P �k � Pa( �A) = O((�k)2) asdesired. I. F. Proof of Proposition 4.6Proof: The average power under the kth policy, �P �k is lower bounded by Pa( �A+�k) thus �P �k � Pa( �A) � Pa( �A+ �k)� Pa( �A) (65)� �kP 0a( �A) (66)where the last step follows from the convexity of Pa.Now we show that ED�k = 
( 1�k ). As in the proof of Lemma 4.3, using Little's lawwe have �D� = E (S�k )= �A where ES�k is the expected bu�er occupancy in steady-stateunder policy �k. This can be written asE (S�k ) = Z 10 Pr(S�k > s) dsSince the transmission rate depends only on the channel state and the sequence ofchannel states are i.i.d., the bu�er process is a random walk restricted to [0;1).Therefore, Pr(S�k > s) can be lower bounded as follows:Pr(S�k > s) � e�r�(�k)(s�Amax):Here r�(�) is the unique nonzero root of the semi-invariant moment generating func-tion of A� �k(H). A proof of this bound can be found in [13, Appendix 6B]. ThusD�k � er��kAmax�Ar��kBy assumption, Lemma 4.4 still applies to r�(�). Thus we have r�(�k) = ��k+ o(�k)where � = 2V ar(A�� �A(H)) . It follows that D�K = 
(1=�). Combining this with theabove bound for �P �k � Pa( �A) we have �P �k � Pa( �A) = 
(1=D�K ) as desired.
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